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Abstract. Cubic L; and Lo interpolating splines based on C! smooth,
piecewise cubic Sibson elements on a tensor-product grid are investigated.
Computational tests were carried out for a 102.4 km by 102.4 km area of
Fort Hood, Texas represented by a 1025 x 1025 set of 100-meter-spacing
(posting) DTED1 terrain data obtained from the National Imagery and
Mapping Agency. L and Lo interpolating splines were calculated for this
area using data at coarser spacings of 800 m, 1600 m, 3200 m, 6400 m,
12800 m and 25600 m. The ¢; and ¢5 errors of the L; spline for a given
spacing are always smaller than the 1 and {2 errors of the Lo spline for
the same spacing. In half of the cases, the ¢~ error of the L spline is
smaller than the ¢~ error of the corresponding Lo spline. In the other
half of the cases, it is larger.

§1. Introduction

Recently, univariate and bivariate cubic L; interpolating splines, the co-
efficients of which are calculated by minimizing the L; norm of the second
derivatives of the spline, have been developed [2, 4]. These splines preserve
shape for smooth data as well as for data with abrupt changes in magnitude
and spacing and for smooth sets of spline nodes as well as for those with abrupt
changes in spacing. In the present paper, we investigate the multiresolution
capabilities of Ly splines on terrain elevation data for Fort Hood, Texas and
compare these capabilities with those of conventional cubic Lo splines.

62. L; and Ly Splines Based on Sibson Elements

The cubic L; and L4 splines that will be used in the present paper are
based on piecewise cubic C! Sibson elements on tensor-product grids. The
tensor-product grids are given by strictly monotonic partitions {x;}!_, and
{y;}7_o of the finite real intervals [xo, 7] and [yo,y.s], respectively.
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To create Sibson elements, one proceeds as follows. One first divides
each rectangle (z;,x;41) X (y;,y;j+1) into four triangles by drawing the two
diagonals of the rectangle. The Sibson element z(z,y) in this rectangle is
cubic in each of these four triangles, is C! on the two diagonals and is C'
with the Sibson elements in the adjacent rectangles. The derivative 0z/dx of
the Sibson element is linear in y along the edges x = x;, x;41; the derivative
0z/0y is linear in x along the edges y = y;, y;4+1. The Sibson element z in a
rectangle is determined by the values of z, 0z/0x and 0z/0y at the corners of
that rectangle as is described in [1, 4].

A cubic Lp spline on the domain D = [xg, 2] X [yo,ys] is the surface
z = z(z,y) that minimizes
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over all Sibson-element surfaces z that interpolate the data
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zij:z(xi,yj), i:O,l,...,I,j:O,l,...,J. (2)

In expression (1), € is a small positive “regularization” number that assists
in making the L; spline coefficients unique. For further information about
g, see Sec. 3 of [4]. The cubic Ly spline defined here is the same as the
cubic Ly spline of type Ay defined in Sec. 3 of [4]. No boundary conditions
are used here, although they could be added without changing the theory or
computational procedure in any significant way.

A cubic Ly spline (of type As) on the domain D = [xg,x7] X [yo,ys] is
the surface z = z(x,y) that minimizes

I|(52) +a(5) + () |oew+ 23 16
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(3)
over all Sibson-element surfaces z that interpolate the data (2). Expression (3)
is the same as expression (1) except for the fact that the terms are measured
in the squares of the Ly and ¢5 norms rather than in the L; and ¢; norms.
The ¢ in expressions (1) and (3) are the same.

63. Algorithm and Computational Examples

In Sec. 4 of [4], nonlinear and linear programming procedures suitable
for minimizing functional (1) are described. The computational procedure
adopted in these papers and in the present paper is to discretize the integral
in (1) and to carry out the minimization by the primal affine method of Van-
derbei, Meketon and Freedman [5, 6], which is described in detail in Sec. 4 of
[4]. The integral in (1) as well as that in (3) was discretized in the following
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manner. Express the integral as the sum of the integrals over the rectangles
(@, Ti41) X (Y5,Yj+1) of the tensor-product grid. Divide each rectangle into
N? equal subrectangles, where N > 2. The integral over the rectangle is ap-
proximated by 1/[2N(N — 1)] times the sum of the 2N (N — 1) values of the
integrand at the midpoints of the sides of the subrectangles that are in the
interior of the rectangle.

Fig. 1. Surface based on 100-meter-spacing data for 102.4 km by 102.4 km area of Fort
Hood, Texas

Computational tests were carried out on a 1025 x 1025 set of terrain data
that consists of the northwest 102.4 km by 102.4 km portion of a 1201 x
1201 set of 100-meter-spacing (posting) DTED1 digital elevation data for
Fort Hood near Killeen, Texas. This data set was obtained from the Ter-
rain Resource Repository of the Terrain Modeling Project Office (TMPO)
on the WWW home page of the National Imagery and Mapping Agency
(URL http://www.nima.mil /geospatial/geospatial.html). For all of
these computational results, N = 3 and e = 10~4/(2N(N — 1)).

In Fig. 1, we present the surface for the 102.4 km by 102.4 km, 100-meter-
spacing subset of the Fort Hood data set mentioned above. This surface, which
was plotted using bilinear elements, is a visual reference for the L; and Lo
splines presented below in Figs. 2-13. Figs. 2-13 were plotted using bilinear
elements on 100 m by 100 m cells, with spline z values at the corners.

In the even numbered Figs. 2-12, we present for the 102.4 km by 102.4 km
area of Fort Hood represented in Fig. 1 the cubic L; interpolating splines
calculated on coarse spline grids at spacings (postings) of 800 m, 1600 m,
3200 m, 6400 m, 12800 m and 25600 m. We denote these splines by 2z, soo],

2[L1,1600]5 Z[L1,3200]> Z[L.,6400]> Z[L:,12800] and 2[r, 25600], Tespectively. In the
odd numbered Figs. 3-13, we present the cubic Lo interpolating splines for
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the 102.4 km by 102.4 km area of Fort Hood represented in Figs. 2-12.
The splines in Figs. 8-13 were calculated on coarse spline grids at spacings
(postings) of 800 m, 1600 m, 3200 m, 6400 m, 12800 m and 25600 m. We
denote these splines by 21, 800, 2[L»,1600]5 Z|L2,3200]5 Z[L2,6400]5 Z[L»,12800] and
2[L,,25600], Tespectively. We emphasize here that the splines of Figs. 2-7 are
interpolating splines that use only the data at the given coarse spacings and
completely ignore the presence of intermediate data points at lower, 100 m
spacing.

Fig. 2. Ly spline Z[L,,800] based on Fig. 3. Lo spline Z[L5,800] based on
800-meter-spacing data for 102.4 km 800-meter-spacing data for 102.4 km
by 102.4 km area of Fort Hood, Texas by 102.4 km area of Fort Hood, Texas

To measure the performance of the splines, we will use the following
discrete norms calculated using the data at the original 10252 data points:
1) the (normalized) ¢; norm || - ||¢, (sum of the absolute values of the 10252
points divided by 10252), 2) the (normalized) ¢, norm || - ||¢,, also known as
the RMS or root-mean-square norm (square root of the quotient that consists
of the sum of the squares of the 10252 points divided by 1025?) and 3) the £
norm || - ||, (maximum absolute value of the 1025% points). In Table 1, we
present the /1, {5 and ¢, norms of the error between the L; splines and the
original set of 10252 data points.

Table 1. Norms of differences between cubic L; splines on coarse grids and
original data

spacing s = 800 1600 3200 6400 12800 25600
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|20, — datalle, = 2.380 4517 7512 12.03  16.82  26.48
210, — datalle, = 3.766  6.636 1046  16.07  22.37  35.07
210, — datall. = 6341 7042 7322 9172 1044  122.0

Fig. 4. Ly spline Z[L,,1600] based on Fig. 5. Lo spline Z[L5,1600] based on
1600-meter-spacing data for 102.4 km 1600-meter-spacing data for 102.4 km
by 102.4 km area of Fort Hood, Texas by 102.4 km area of Fort Hood, Texas

Fig. 6. Ly spline Z[L,,3200] based on Fig. 7. Lo spline Z[L4,3200] based on
3200-meter-spacing data for 102.4 km 3200-meter-spacing data for 102.4 km
by 102.4 km area of Fort Hood, Texas by 102.4 km area of Fort Hood, Texas
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In Table 2, we present the ¢4, 5 norms and /., norm of the error between
these Lo splines and the original set of 10252 data points.

Table 2. Norms of differences between cubic Ly splines on coarse grids and
original data

spacing s = 800 1600 3200 6400 12800 25600

|2(0,.6] — datallp, = 2.408 4568 7.537 1204 1691  26.77
|2(0,.6] — datalle, = 3771 6.694 10.52  16.10 2251  35.37
21,4 — datall.= 61.76  70.66 73.38 87.97 1069  120.4

Fig. 8. L; spline Z[L1,6400] based on Fig. 9. Lo spline Z[L,,6400] based on
6400-meter-spacing data for 102.4 km 6400-meter-spacing data for 102.4 km
by 102.4 km area of Fort Hood, Texas by 102.4 km area of Fort Hood, Texas

By careful visual inspection of the figures, one can see differences in the
L, and Lo splines for the same spacing. These differences consist mainly of
additional oscillation in the Lo splines. However, one is not able to determine
by visual inspection which type of spline, L; or Ls, is more accurate. Some
information about the accuracy can be gathered from the norms of the errors
in Tables 1 and 2. In these tables, the ¢; and ¢y errors of the L; spline for
a given spacing are always smaller than the ¢; and /5 errors of the Lo spline
for the same spacing. In three cases, the /. error of the L; spline is smaller
than the ¢, error of the corresponding L, spline. In the other three cases, it
is larger.

In Table 3 we present estimated processing times for the interpolating
spline runs that produced the images in Figs. 2-13. Any processing times
less than one second are reported as one second since the time function used
in the interpolation program did not return any time less than one second.
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It should be noted that the interior point algorithm used always produced
the Lo interpolation coefficients at the first iteration of the algorithm. The
L, interpolation coefficients for all of the runs were produced in the range of
between nineteen and thirty iterations.

L1 Splrs el (T Homad 21 21 Gl L] Sl Wl (T o 21 2 £ ol

II.
Fig. 10. L; spline Z[L,,12800] based on Fig. 11. Ls spline Z[L5,12800] based on
12800-meter-spacing data for 102.4 km 12800-meter-spacing data for 102.4 km
by 102.4 km area of Fort Hood, Texas by 102.4 km area of Fort Hood, Texas
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Fig. 12. Lq spline Z[L,,25600] based on Fig. 13. Lo spline Z[L4,25600] based on
25600-meter-spacing data for 102.4 km 25600-meter-spacing data for 102.4 km

by 102.4 km area of Fort Hood, Texas by 102.4 km area of Fort Hood, Texas
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Table 3. Estimated Processing time, in seconds for computing Li and Lo
interpolating splines on coarse grids. The computer was a 933 MHz PC work-
station with 1.5 GB of RAM.

spacing s = 800 1600 3200 6400 12800 25600
2Ly 5] = 2240 102 1 1 1 1
Z[L3,s] = 76 7 1 1 1 1

84. Conclusion

It was noted in [2, 4] that cubic L; interpolating splines preserve shape
much better than cubic Lo interpolating splines. The results of the present
paper indicate that more evidence is needed before final conclusions about
the relative performance of cubic L, and Lo interpolating splines for irregular
natural terrain can be made.

One unsolved issue that will be a large factor in further investigations
is the metric in which the error should be measured. The /1, {5 and /.
norms are widely used to measure shape preservation. However, it is well
known that the magnitudes of these norms do not correspond well to degrees
of shape preservation as perceived by most observers. Alternatives such as
the BV norm (norm of the space of functions of bounded variation) also do
not express well what human beings understand by shape preservation. Shape
preservation is not yet quantitatively understood. A closely related issue is
determining the function spaces or classes to which terrain surfaces belong.
Those spaces or classes, which may be different for different types of surfaces
(for example, natural terrain and urban terrain) and for different human uses,
are still unknown in spite of many efforts in the past to characterize terrain us-
ing classical measures of smoothness, fractal dimensions and other techniques.
It is likely that theoretical justification of the advantages of L; splines will
go hand in hand with quantification of the concept of shape preservation and
with clarification of the function spaces or classes to which various terrain
surfaces belong.

In the present paper, we have investigated the behavior of cubic L; in-
terpolating splines. However, when the spline grid is coarser than the data
grid, smoothing splines, which approximate rather than interpolate, are often
a more appropriate tool than interpolating splines. The authors will soon
carry out computational tests for L; smoothing splines on large terrain data
sets. These smoothing splines will be bivariate extensions of the L1 smoothing
splines introduced in [3].
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